SP LICING TECHNIQUES
SPLICING MACHINE
PARTS OF INTERNAL CABLE OR FIBER DROP WIRE
STEPS FOR FIBRE OPTICS SPLICING

STEP 1: PREPARE THE WORK AREA

- When preparing the work area make sure you have the following items:
 - Fusion Splicer
 - Precision Cleaver
 - Cinbin
 - Lint free tissues
 - Isopropyl alcohol
 - Strippers
 - Kevlar scissors
 - Splice Protectors
 - Rotary Cable Slitting & Ringing Tool
STEPS FOR FIBRE OPTICS SPLICING

STEP 2: REMOVE THE CABLE JACKET FROM THE DROP WIRE OR INTERNAL CABLE USING A ROTARY CABLE SLITTING & RINGING TOOL OR STRIPPER
STEPS FOR FIBRE OPTICS SPLICING

STEP 3: CUT THE KEVLAR TO APPROPRIATE LENGTH USING YOUR KEVLAR SCISSOR.

STEP 4: REMOVE CLADDING FROM DROPWIRE OR INTERNAL CABLE.
STEPS FOR FIBRE OPTICS SPLICING

STEP 5: PLACE THE SLEEVES

STEP 6: STRIP THE COATING
STEPS FOR FIBRE OPTICS SPLICING

STEP 7: CLEANING THE CORE FIBRE WITH ISOPROPYL ALCOHOL

STEP 8: CLEAVING THE CORE FIBRE
STEPS FOR FIBRE OPTICS SPLICING

STEP 9: PLACE THE FIBRE IN THE SPLICING MACHINE (fibre should be placed 3mm before electrode)

STEP 10: SPLICE THE FIBRE BY PRESSING SET ON THE SPLICING MACHINE (Loss value permissible should be from 0.05dB to 0.10dB)
STEPS FOR FIBRE OPTICS SPLICING

STEP 11: PLACE THE SPLICE PROTECTOR ON THE SPLICING AND PLACE IT INSIDE THE HEATING CHAMBER AND PRESS THE HEAT BUTTON ON THE SPLICING MACHINE.

STEP 12: INSTALL THE REMAINING FIBRE AND THE SPLICE IN THE SPLICING TRAY AFTER A COOLING TIME OF 3 MIN AND CLOSE THE TB
AVOIDING COMMON SPLICING ERRORS

Good Splice
Upon inspection with a microscope good splice will show no visible signs of being two joined fibres and no defects.

Dark Line
A line visible through the splice can indicate that the arc was not strong enough to sufficiently melt the fibres prior to stuffing.

Air Bubble
Air bubbles in joint are caused by poor cleave or dirt on fibre end face.

Necking
Insufficient pressure during stuffing.

Swelling
Too much pressure during stuffing.

Too Much Arc
Molten ends producing 'pin head' effect and may be caused by arc current too high or arc current too long.

fibres Too Far Apart
Initial gap set between fibres too wide thus fibres do not meet when their ends are molten.